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Since I am unable to be here today for health reasons, I have prepared this summary
of methodological issues that have concemed us and how we have dealt with them.
As aresult, [ have reached certain convictions that I submit for your consideration.



» The best PCAR+ model may difer from any least-
squares subset model based on property variables

» The fact that such amodel contains all property
variables makes explicit what is implicit in ordinary
least-squares regression

» PCR+ provides estimates of regression coefficients for
principal components, not property variables

» Both will be consistent if the number of eigenvectors

and the number of selected property variables are the
same

» “Pruning’ of property variables from eigenvectors is a
valid option but is not essential

Our first contention 1s that PCR+models are the essence of brevity. This assertion
is often countered by the objection that an eigenvector model retains all the original
variables and that therefore no economy has been realized. We have shown,
however, that in OLS models all variables are ALSO retained - it is just that some
of the variables are hidden.

In PCR+ we know explicitly how each transformed variable is defined. The model
exhibits maximum parsimony because the dimensionality of the problem is
appreciably reduced in the space of eigenvectors.

If it so happens that p(r)%pe variables can be "pruned" to conform to the number of
eigenvectors in the model, the eigenvector coefficients can be simi)ly transformed
into the corresponding property-variable coefficients. This is not likely to happen,
however, because dimension reduction is generally "steeper” for eigenvectors than
for property variables.



= Selected issues on variable specifications —e.g.,
additized cetane

mMethodology for evaluating non-linear and
interactive terms

m Select final emissions models for use in DOE
refinery modeling on fuel reformulation

= Additional DOE/ORNL publications in late 2001
or 2002.

This chart summarizes the directions our work on eigenfuels is likely to take. There
are some methodological issues we need to address, ncluding how best to specify
some variables like additized cetane and to evaluate a full range of non-linear and
interactive terms. The issue on additized cetane is whether it 1s more effective to
include total cetane in place of cetane difference and allow the eigenvector
decomposition to sort out the difference between natural and total cetane.

Having done this, our next major milestone is to select a final emissions model for
use in DOE refinery analyses related to diesel fuel reformulation.

We expect to release additional publications on this work in late 2001 or early 2002.



» R-Square measures only how well a regression equation
fits the data set: it does not necessarily insure good
predictions elsewhere in property space.

» Validation testing using a split sample may not guarantee
good prediction either: randomly selected samples are
likely to exhibit the same aliasing structure, so that
agreement of the samples is somewhat pre-ordained.

» Property-based regression produces many models that are
nearly equal in performance in the discrete space of
observations.

» PCR+models obey a hierarchy that makes for unique
choices.

We come, now, to question the venerable concept of R-Square. The fact is that R-
Square, the so-called Coefficient of Determination, is based ENTIRELY on the
observed data in the dataset. Therefore, it is ameasure of degree of fit in a
DISCRETE environment consisting of a disjoint and unconnected set of points in
predictor space. Theoretically, there exists an infinite number of CONTINUOUS
functions that can fit the data points equally well. Which one 1s "correct” isnot a
foregone conclusion.

Many subset models based on fuel properties exhibit nearly equal R-Square values
and even yield nearly the same point-by-point predictions so long as these
predictions are limited to the dataset. Their predictions in continuous space can
differ materially, however, a point that requires no proof when it is realized that the
subset models contain DIFFERENT variables and that a retained variable can not
explain what a missing variable could.

Subset models in property space exhibit no orderly basis for choice, whereas
eigenvector models are strictly ordered so that optmum choice is evident.



nThe 0.05 significance level is not sacrosanct;
considerations of the power of a test of
significance needs to be taken into account.

mMeasures of the magnitudes of effects should
supplement measures of statistical significance;
we call these measures of substantiality.

There are other afl%ects of modeling that are of concem. These have been detailed

in our previous publications and are listed here for completeness.

In summary, we believe that our approach constitutes a different PARADIGM for

model building and that it is well supported by both theoretical and practical
considerations.



mEvery dataset has its own set of independent
vectors that eliminate such aliasing.

mThese eigenvectors are the “true” variables and
are the only ones caFable of providing an
unambiguous model.

= PCR+ is an extension of the method described in
the literature as PCR. Its distinction consists in
the way that vectors are selected for inclusion in

the model.

It is at this point that the notion of eiﬁlmvector modeling comes into play. The fact that every
dataset has an orthogonal basis is at the root of the methodology that we have referred to as
PCR+. It uses the methodology of Principal Components Regression (PCR) except for the way in
which one selects the set of eigenvectors to retain i a subset model.

For some reason that I cannot understand, data analysts have used the eigenvalues of the design
matrix (X-matrix) as the basis for including or excluding eigenvectors. As late as 1998 critics
(see Hadi and Ling) were still pointing out that such an approach could lead to miserable failure.

In reality, the columns of numbers in a design matrix consisting of the principal components is
just that. columns of numbers. If they were labeled X1, X2, X3, ... Xn and given as a textbook

'‘exercise for the student," no one would ever suspect their shad{/ﬂpast. Given a response vector
Y, the student would faithfully do what is expected: derive a multiple regression equation,
perform some tests of significance and publish the results on the Intemet.

In short, PCR+ employs the methodology of least squares regression and benefits from all of its
characteristics, such as unbiasedness and minimum variance estimation. Moreover, it is not
subject to bias, as is stepwise regression, when terms are removed from the model because the
agl?asi.}n Itllllatl'lx Ozls ?u]l. Therefore, coefficients are invariant when terms are added to or removed

e model.

The eigenVALUES pertain only to the variation AMONG THE PREDICTOR VARIABLES and
have nothing to do with the response.




mExcept for balanced experimental designs, every
dataset has its own peculiar interdependencies.

mThese interdependencies produce aliasing among
predictor variables.

= Selection of variables from such a dataset only
changes the aliasing; it does not eliminate it.

mVariables, therefore, have chameleon
characteristics and can not be interpreted as
representing what their names imply.

My first concem is with what we have come to call "aliasing" among
interdggendent variables. It is, I believe, the primary source of many if not most of
the difficulties analysts face in formulating a regression equation to represent a
given dataset. It is quite important, therefore, that this concept and its implications
be fully understood.

I believe that conventional eép roaches to modeling interdependent data represent,
for the most part, means to CIRCUMVENT rather than Y this defect. The
next few slides will address this issue.
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My demonstration is based on engine-corrected NOx data for technology group T,
for which the seriousness of interdependence is illustrated by this slide.

Because of the interdependencies among the predictor variables, the regression
coefficient for a particular predictor - say, aromatics -- represents regression on
ONLY that part of the predictor that is NOT explained by other predictor variables.
That part is measured by a quantity called TOLERANCE. It is one minus the R-
Square obtained when that variable is regressed on all the other predictors.

In this chart it is evident that several of the predictors have very low tolerances and
that only two, oxygen and sulfur content, are relatively independent of the others.



Effect of Variable Selection on Regression
Coefficients
Before After
Selection Selection
Fuel Property Coeff t Coeff t
Nat Cetane -0.0077 0.58
Nat Cetane”2 -0.0042 0.31
Cet Diff -0.0289 6.15* -0.0273 5.76%*
Cet Diff*2 -0.0127 2.78% 0.0122 2.62%
Aromatics 0.0324 5.24% 0.0248 10.6* <-—-
Aromatics”2 -0.0098 1.81
Spec Gravity 0.0106 3.20%* 0.0203 8.61* <--
Oxygen Content 0.0053 3.68%* 0.0055 3.74*%*
T10 0.0104 4.52% 0.0103 4.82%*
T50 -0.0104 3.05* -0.0173 7.57* <--
T90 0.0021 0.95
Sulfur -0.0021 1.43

We begin our demonstration by performing an ordinary regression in which all 12
fuel-property variables are included as predictors. Because of the fact that the
emissions are deviations from amean value, they sum to zero and have zero
mntercept.

As 1s usually done, those variables satisfying the 0.05 significance level are
retained; all others are rejected. In this case 7 predictors are retained. The result is
one of the 4095 possible subset models.

I call your attention to three variables -- aromatics, specific gravity, and TS0 -- that
appear to be much more significant in the subset model than in the full model.



What Caused the Change in Aromatics,
Specific Gravity and TS0?
REGRESSION COEFFICIENTS
All Variables Variables

Fuel Property Variables Eliminated Retained
Nat Cetane -0.0077 -0.0077
Nat Cetane”2 -0.0042 -0.0042
Cet Diff -0.0289 -0.0273
Cet Diff”"2 -0.0127 0.0122
Aromatics 0.0324 0.0248 <--
Aromatics”2 -0.0098 -0.0098
Spec Gravity 0.0106 0.0203 <--
Oxygen Content 0.0053 0.0055
T10 0.0104 0.0103
T50 -0.0104 -0.0173 <--
T90 0.0021 0.0021
Sulfur -0.0021 -0.0021

Just what caused the change in regression coefficients and their apparent
significance for these three variables? Evidently these variables benefited from the
deletion of the 5 variables: Nat Cetane, Nat Cetane”2, Aromatics™2, T90 and
Sll;(liﬁlr. Exactly HOW this benefit comes about will be shown in the next two
slides.

The change in the value of the retained coefficients can be uted explicitly by
means of a quantity called the ALIAS matrix or, for reasons to be shown later,
sometimes also called the BIAS matrix. Iwill not attempt here and now to show
the theory underlying this computation. Its effect, however, is that each of the
rejected coefficients 1s given a weight specific to each of the retained coefficients.

e weighted sum of the rejected coefficients is then added to the retained
coefficient as initially computed when all 12 variables were in the model. It will be
seen that the added portion is exactly equal to the difference between the
coefficients for the subset model and for the full model.



Aliasing of Aromatics to Other

Aromatics Coefficent (Full Model) : 0.0324
+ contributions from

Natural Cetane 0.0016
Natural Cetane”2 0.0007
Aromatics”2 -0.0103
T90 0.0005
Sulfur content -0.0001
= 0.0248

Aromatics Coefficient (Subset Model) 0.0248

This chart shows how the aromatics coefficient changes from 0.0324 in the full
model to 0.0248 in the subset model. Note that the major source of the change is a
contribution from the Aromatics™2 term. Thus, what we originally thought was a
linear aromatics effect is now "aliased" with its square term.



Spec Grav Coefficent (Full Model) : 0.0106
+ contributions from

Natural Cetane 0.0058

Natural Cetane”2 0.0034

Aromatics”2 0.0013

T90 -0.0004

Sulfur content -0.0004

= 0.0203

Spec Grav Coefficient (Subset Model) 0.0203

The case is not so simple for specific gravity.

Here, the coefficient for specific gravity is almost doubled in going from the full
model to the subset model. This change is primarily atrributable to natural cetane
and its square term. What we originally thought was the effect of specific gravity,
therefore, is now aliased with the effect of natural cetane and its square.

The generalization to be made here is that similar modifications in coefficients will
be made for ANY subset of the predictor variables. Relative to the full model, the
coefficients in the subset model may be said to be BIASED, and it is for this reason
that the transforming matrix is sometimes called the BIAS matrix.

It should be noted, also, that the coefficients for ANY SUBSET MODEL can be
computed directly from the coefficients for the full model, without perfomming the
least-square procedure for the subset.



